Etape 1 : Identification de la protéine par comparaison à la base de données

Résultats du « protein blast » :

• Identification d'un domaine fonctionnel conservé « Toxin 15 » dans la région N terminale de la protéine. Le motif a une longueur d'environ 275 acides aminés (sur les 560 de la protéine étudiée) :

Ξ	Show Conserved [Dor	nain	S																									
			Put	ative	e co	onse	erve	d do	oma	ains	s hav	e b	een	det	tect	ed,	clic	k o	n th	e ir	nag	e be	elov	v for	de	taile	ed re	esult	s.
	Query seq.	1				7	5				150				. :	225				3	00		_		375				450
	Specific hits								То	oxi	in_1	.5							D										

En survolant la zone avec le curseur, on est redirigé vers la page du NCBI dédiée aux « Domaines conservés », on peut alors obtenir une fenêtre d'informations :

Tox	kin_15
	1 Cdd:pfam07906
, N-ter = MPY odd v3.1	[Specific hit] Cdd:pfam07906, ShET2 enterotoxin, N-terminal region. The members of this family are are sequences that are similar to the N-terminal half of the ShET2 enterotoxin produced by Shigella flexneri and Escherichia coli. This protein was found to confer toxigenicity in the Ussing chamber, and the N-terminal region was found to be important for the protein's enterotoxic effect. It is thought to be a hydrophobic protein that forms inclusion bodies within the bacterial cell, and may be secreted by the Mxi system. Most members of this family are annotated as putative enterotoxins, but one member is a regulator of acetyl CoA synthetase, and another two members are annotated as ankyrin-like regulatory proteins and contain Ank repeats (pfam00023).

En résumé, on y apprend que le motif « Toxin 15 » est retrouvé chez *E.coli* et *Shigella flexneri*. Il s'agit d'un polypeptide hydrophobe à effet entérotoxique.

• En retournant sur la page de résultats de Blast, on constate que les séquences alignées les plus significatives figurent en haut de classement, soit sous forme de graphique, soit sont directement recensées sous forme de liste :

Seq	uences producing significant alignments:						
Sele	ect: All None Selected:0						
<u>ii</u>	Alignments Download <u>GenPept</u> Graphics Distance tree of results Multiple		ent				
	Description	Max score	Total score	Query cover	E value	Max ident	Accession
	ShET2 enterotoxin [Escherichia coli 53638] >ref[ZP_11502061.1] putative shET2 enterotoxin	1127	1127	100%	0.0	99%	YP_001919259.
	OspD3 [Shigella boydii Sb227] >ref[ZP_14853925.1] putative enterotoxin [Shigella boydii 444	1125	1125	100%	0.0	99%	YP_406300.1
	Enterotoxin [Shigella flexneri CDC 796-83] >gblAAP78983.1[OspD3 [Shigella flexneri] >gblE	1125	1125	100%	0.0	99%	ZP 11653627.1

On constate que la protéine analysée semble correspondre à une entérotoxine ShET2 d'E.coli avec un score de 1127. En cliquant sur le lien, on peut alors visualiser l'alignement :

ShET2 enterotoxin [Escherichia coli 53638] Sequence ID: ref[YP_001919259.1] Length: 565 Number of Matches: 1 See 12 more title(s)

Range 1	: 2 to 5	560	GenPept	Graphi	CS					V No	ext Match	A Previous Mat
Score			Expect	Method	1			Identiti	es	Positi	ves	Gaps
1127 b	its(291	14)	0.0	Compo	sitiona	l matrix	adjust.	554/55	9(99%)	554/5	59(99%)	5/559(0%)
Query	1	PSV	NLIPSR	KICLON	MINKD	IVSVETI	QSLLHS	KQLPYFS	DKRSFLI	LNLNCQ	VTDHSGRI	60
Sbjct	2	PSV	NLIPSR	KICLON	MINKD	VSVETI	QSLLHS	KQLPYFS	DKRSFLI	LNLNCO	VTDHSGRI	61
Query	61	IVC	RHLASY	WIAQFN	KSSGH	DYNHE	FPDEIK	NYVSVSE	EEKAIN	VPAILY	FVENGSWO	120
Sbjct	62	IVC	RHLASY	WIAQFI	KSSGH	DYHHF7 DYHHF7	AFPDEIK	NYVSVSE	EEKAIN	VPAILY	FVENGSWO	, 121
Query	121	DII	FYIFNE	MIFHSE	KSRA-I	SISTSNE	INMALGL	KIKETKN KIKETKN	GGDFVI	DLYDPN	HTATHLRA	179
Sbjct	122	DII	FYIFNE	MIFHSE	KSRALI	ISTSNE	INMALGL	KIKETKN	GGDFVI	QLYDPN	HTATHLRA	181
Query	180	EFN	KFNLAK	IKKLT	DNFLDE	EKHQKCY	GLISDG	MSIFVDR	HTPTSM	SSIIRW	PNNLLHP	239
Sbjct	182	EFN	KFNLAK	IKKLT	DNFLDI	EKHQKCY	GLISDG	MSIFVDR	HTPTSM	SSIIRW	PNNLLHP	241
Query	240	VIY	HAMRMG	LTELIC	KVTRV	QLSDLS	DNTLEL	LLAAKND	DGLSGL	LLALQN	GHSDTILA	299
Sbjct	242	VIY	HAMRMG	LTELI	KVTRV(QLSDLS 7QLSDLS	DNTLEL	LLAAKND	DGLSGLI	LLALQN	GHSDTILA	301
Query	300	YGE	LLETSG	LNLDKT	VELLT/	AEGMGGE	RISGLSQ	ALQNGHA	ETIKTY	GRLLKK	RAINIEYN	359
Sbjct	302	YGE	LLETSG	LNLDKI	VELLTA	AEGMGGI	RISGLSQ	ALQNGHA	ETIKTY	GRLLKK	RAINIEYN	361
Query	360	KLK	NLLTAY	YYDEVE	RQIPGI	MFALON	GHADAI	RAYGELI	LSPPLLI	SEDIV	NLLASRRY	419
Sbjct	362	KLK	NLLTAY	YYDEVI	RQIPGI	MFALQI	GHADAI	RAYGELI	LSPPLLI	SEDIV	NLLASRRY	421
Query	420	DNV	PGLLLA	LNNGQ/	DAILAN	GDILNE	AKLNLD	KKAELLE	AKDSNG	LSGLFV	ALHNGCVE	479
Sbjct	422	DNV	PGLLLA	LNNGQI	DAILAN	GDILNE	AKLNLD	KKAELLE	AKDSNG	LSGLFV	ALHNGCVE	481
Query	480	TII	AYGKIL	HTADLT	PHQASE	LLAAE	PNGVSG	LIIAFQN	RNFE	YMGI	IKNENITE	535
Sbjct	482	TII	AYGKIL	HTADLI	PHQASE	LLAAE	PNGVSG	LIIAFQN	RNFEAI	KTYMGI	IKNENITE	541
Query	536	EEI	AEHLDK	KNGSDE	LEIM	554						
Sbjct	542	EEI	AEHLDK	KNGSDI	LEIM	560						

La séquence de notre protéine (Query) présente 554 acides aminés identiques par rapport aux 560 de l'entérotoxine ShET2 de la base de donnée (subject). Il y a donc 554 match, on constate également un gap de 5 acides aminés (-----). 554 match + 5 gap = 559 : il n'y a donc aucun mismatch.

Etape 2 : Traduction de la séquence protéique en séquence nucléotidique

Résultats du « tBlastN » :

Après traduction à partir de la séquence protéique, tBlastN retourne en tête de liste, une correspondance avec une séquence nucléotidique : le plasmide p53638-226 de *E.coli*.

Seq	uences producing significant alignments:							
Sele	ect: All None Selected:0							
AT AT	Alignments 🖥 Download 🖂 GenBank Graphics						0	
	Description	Max score	Total score	Query cover	E value	Max ident	Accession	_
	Escherichia coli 53638 plasmid p53638_226, complete sequence	1126	1785	100%	0.0	99%	CP001064.1	
	E.coli senA gene (isolate EI-34)	1126	1126	100%	0.0	99%	<u>Z54194.1</u>	

En cliquant sur le lien du numéro d'accession, Blast redirige vers la fiche Genbank du plasmide :

Extrait de la fiche :

En début de fiche (ligne LOCUS) on constate que le plasmide représente 225.683 paires de bases.

Display Settings: V GenBank

Send: 🖂

Escherichia coli 53638 plasmid p53638_226, complete sequence

GenBank: CP001064.1 FASTA Graphics LOCUS CP001064 225683 bp DNA circular BCT 16-MAY-2008 DEFINITION Escherichia coli 53638 plasmid p53638_226, complete sequence. ACCESSION CP001064 CP001064.1 GI:188501074 VERSION DBLINK BioProject: PRJNA15639 KEYWORDS Escherichia coli 53638 SOURCE ORGANISM Escherichia coli 53638 Bacteria; Proteobacteria; Gammaproteobacteria; Enterobacteriales; Enterobacteriaceae; Escherichia. REFERENCE 1 (bases 1 to 225683) AUTHORS Rasko, D.A., Rosovitz, M.J., Brinkley, C., Myers, G.S.A., Seshadri, R., Cer,R.Z., Jiang,L., Sebastian,Y. and Ravel,J. TITLE Direct Submission JOURNAL Submitted (01-MAY-2008) The Institute for Genomic Research, 9712 Medical Center Dr., Rockville, MD 20850, USA COMMENT The chromosome for this organism was deposited in GenBank Accession Numbers AAKB02000001-AAKB02000002. FEATURES Location/Qualifiers 1.,225683 source /organism="Escherichia coli 53638" /mol_type="genomic DNA" /strain="53638" /serotype="0144" /db xref="taxon:344610" /plasmid="p53638_226"

Change region shown **Customize view** Analyze this sequence Run BLAST Pick Primers Highlight Sequence Features Find in this Sequence Related information **Related Sequences** Assembly **BioProject** Full text in PMC Gene Genome Identical RefSeg Protein PubMed (Weighted) Taxonomy

gene

... fin de la fiche :

302..577

```
224821 cttttggaga agetgattat ategteegg tteaetggeg aggattgege tggttaaetg
224881 cagaaggaat gegetttgae atgatgggtt ttetgegegg getggattge ggtaagaaeg
224941 gtgaaaceae tgtaatgata ggeaatteag gtaataaaaa ageeggaget eeetteegg
225001 caegteteat tgeegtatea etteeteeg aaaaageatt aateagtaaa aeeeggagee
225061 teagegagaa tegtegaaaa ggaegagtag tteaggegga aaegetggaa geagegggee
225121 atgtgetatt getaacatea ttaeeggaag atgaatatte ageagageaa gtggetgatt
225181 gttaeegtet gegatggeaa attgaaetgg etttaageg geteaaaagt ttgetgeaee
225301 tegeegeatt tetaattgae gaaeetgaae tegegaage gtggatatt getaatetae
225301 tegeegeatt tttaattgae gaeatatee ageeateget ggatteeee eeeaagg
225361 ceggateega aaagaagaae taaetegttg tggagaataa caaaaatggt eatetggage
225361 ceggateega gteetaaegg ggeeaegge etteaaaetget teeaaeagge
225421 ttaeaggtgg ceattegtg gaeagtatee etgacageet aceaaaaegea attgaagaae
225481 gegaggeate gtettaaega ggeeeegag egtegeatte tteagatggt teeaeetta
225541 agttagegt tatgggaata teteeegge ageetteagg ataaaatatt ateagatgae
225481 gegaggeate gtettaaega ggeeeegag egtegeatte tteagatggt teeaeetta
225541 agttageget tatgggaata teteeegge ageetteagg ataaaatatt ateagatgae
225601 tgettagaaa aagaacaaat ggtggtgtee getattgeea gtaeaeetea ageettetae
225661 catatttgaa ataaagetea ata
```

11

You are here: NCBI > DNA & RNA > Nucleotide Database

GETTING STARTED NCBI Education NCBI Help Manual NCBI Handbook Training & Tutorials

RESOURCES Chemicals & Bioassays Data & Software DNA & RNA Domains & Structures

POPULAR	FEATUR
PubMed	Genetic 1
Nucleotide	PubMed
BLAST	GenBank
PubMed Central	Referenc

<u>Remarque</u> : en parcourant la fiche dans la longueur (bon courage, elle est longue !), on constate qu'il y a bien un ORF correspondant au gène codant l'entérotoxine ShET2. Celui-ci est localisé entre les paires de base 154687 à 156384 :

gene	complement(154 <u>687156</u> 384)
	/locus_tag="Ec53638_A0209"
CDS	complement(154687156384)
	/locus tag="Ec53638 A0209"
	/note="identified by match to protein family HMM PF07906"
	/codon start=1
	/transl table=11
	/product="ShET2_enterotoxin"
	/protein id="ACD54249.1"
	/db xref="GT+188501114"
	/tranglation="MDGWWTTERDEVICIONWINKDNUGUEWIOGIIUGKOIDVEGDVE
	CELLNINCOMPUSCOL TUCOUL ASVALASENVESCOUNDUUENEDET NUVUSUSEE
	BY A THUR A THE DESCRIPTION OF THE TRUE AND AND A THE ADDRESS OF ADDRES
	ERAINVPATTIFVENGSWGDIFFTFNEMIFNSERSRALETSTSNHNMALGERIRET
	NGGDFVIQLIDPNHTATHLRAEFNKFNLAKIKKLTVDNFLDEKHQKCIGLISDGMSIF
	VDRHTPTSMSSIIRWPNNLLHPKVIYHAMRMGLTELIQKVTRVVQLSDLSDNTLELLI
	AAKNDDGLSGLLLALQNGHSDTILAYGELLETSGLNLDKTVELLTAEGMGGRISGLSQ
	ALQNGHAETIKTYGRLLKKRAINIEYNKLKNLLTAYYYDEVHRQIPGLMFALQNGHAD
	AIRAYGELILSPPLLNSEDIVNLLASRRYDNVPGLLLALNNGQADAILAYGDILNEAK
	LNLDKKAELLEAKDSNGLSGLFVALHNGCVETIIAYGKILHTADLTPHQASKLLAAEG
	PNGVSGLIIAFQNRNFEAIKTYMGIIKNENITPEEIAEHLDKKNGSDFLEIMKNIKS"
gene	156460156648
	/1

Pour manipuler plus simplement la séquence de ce long plasmide de 225 kbp, on retourne en début de fiche pour convertir la fiche en format FASTA :

S NCBI Resources 🖸 How To 🖸								
Nucleotide	Nucleotide +)						
		Limits	Advanced					

Display Settings: 🖂 GenBank

Escherichia coli 53638 plasmid p53638

GenBank: CP	2001064.1			
FASTA Grap	ohics			
Go to: 🕑				
TOQUE	0001064	225602	hn	DNA
LOCUS	CP001064	220683	qq	DNA

Après conversion, on obtient une séquence simplifiée plus facilement gérable par copier - coller :

Extrait en format FASTA :

```
>gi|188501074|gb|CP001064.1| Escherichia coli 53638 plasmid p53638_226,
sequence
GCGCGAATTTTTTGTTCTTCAGTAAACATGTTTCATCTTCTGAGAGTCCAGGAAATCGTCCGCATCCCCA
TTACCGTCTTATATCACTGGCGCTGACATGTGCTCATTGATGAAGTGAATCTGAATGACATGTTTTGCCA
TATCAACGCCAACCGGTGTATATTTCATTTGTGGGAGTCTCCAGTCTGAGGACGCTTTATGCATCCCGTAT
TGGGCAGTATGATGCCGGAAAGCTGCGAGGCTCCACACCTGCCAGTTTCACCCTTTTAACCATCATACTA
CTCCGTGTTTAATTGTGTGGGGATGCGTTCATTACATTTTAACAGTGTCACCCGTCGGCCACGAAAGATA
AACAGGTGACCAGAAAAGGGATCTTCATCCAGCACATGCTATATCTTGAACGTAACAACCTGACCCTCCG
CACCCGCATCAAGCGGCTGGCACGTAAAACAATCTGCTTCTCGCGTTCCGTGGAAAACCACACGTATCATCTTTTTA
TCGGCTCCTTCATTGAAAAACACATATTCTACTGATTGGAAGCGCCACCGAAAAAGTATCGTTTTTTTA
```

Pour récupérer la séquence, procéder soit par copier- coller du contenu dans un document texte (avec le bloc notes ou le wordpad dans les accessoires du système d'exploitation), soit utiliser plus simplement le générateur de fichier de NCBI qui est en entête de fiche (outil « send » en haut à droite) :

		Send: 🖂
3638_226, comple	 Complete Rep Coding Seque Gene Feature 	cord ences es
	Choose Destina	ation
53638 plasmid p53638_22	 File Collections 	Clipboard Analysis Tool
FCCAGGAAATCGTCCGCATCCCC SAATCTGAATGACATGTTTTGCC SAGGACGCTTTATGCATCCCGTA FTCACCCTTTTAACCATCATACT FCACCCCGTCGGCCACGAAAGAT FGAACGTAACAACCTGACCCTCC FCCGTGGAAAACTATCGTTTTTTT.	Download 1 iten Format FASTA Create File	ns.
FACCAAAATATAACATAAGGAAG	r	

En cliquant sur « Create file », le fichier texte au format FASTA sera immédiatement uploadé sur votre ordinateur sous le nom « sequence ». Ce fichier pourra alors être utilisé ultérieurement pour interroger d'autres outils !!

00	
Précédent	Présentation Action Disposer
FAVORIS	Dossier partagé
Dropbox	
Tous mes fichiers	
P AirDrop	
Macintosh HD2	TXT
Applications	sequence.txt
🔜 Bureau	

Etape 3 : Recherche des amorces pour l'amplification du plasmide

Dans le logiciel **Primer3** accessible en ligne, coller la séquence du plasmide et rechercher les amorces les plus intéressantes en cliquant sur « Pick primers » :

	p.wi. mit.edu		☆ ⊽	C B Goog
Primer3	6 D.V.	Checks for mis	priming in template.	disclaimer
TIMES (v. 0.4.0) Pick prime	ers from a DNA sequence.	Primer3	plus interface	cautions
There is a newer version of Prime	er3 available at <u>http://prime</u>	:3.wi.mit.edu/		
Paste source sequence below (5'->3', strin N-out undesirable sequence (vector, ALU	g of ACGTNacgtn other letters t s, LINEs, etc.) or use a Mispriming	reated as N num Library (repeat li	bers and blanks ignored brary): NONE	d). FASTA form
CAAAAATGGTCATCTGGAGCTTACAGGTGGCCAT	TCGTGGGACAGTATCCCTGACAGCCTAC	AAACGCA		1
ATTGAAGAACGCGAGGCATCGTCTTAACGAGGCA AGTTAGCGCTTATGGGAATATCTCCCCCGGCAGCC AAGAACAAATGGTGGTGTCCGCTATTGCCAGTAC	CCGAGGCGTCGCATTCTTCAGATGGTTCA TTCAGGATAAAATATTATCAGATGACTG(ACCTCAAGCTTCTTACCATATTTGAAATA	TTAGAAA AAGCTCA		
АТА				
✓ Pick left primer,	Pick hybridization probe (in	ternal	Pick right primer,	or use right prin
or use left primer below:	oligo), or use oligo below:		(5' to 3' on opposite str	rand):
Pick Primers Rese: Form				

Le logiciel retourne alors les 2 amorces sens / antisens à utiliser pour l'amplification par PCR :

Primer3 Output

No mispriming li	ibrary speci	fied				
Using 1-based se	equence posi	tions		/		
OLIGO	start len	tm	gc&	any	3' seg	1
LEFT PRIMER	114856 2	0 60.00	40.00	5.00	3.00 AATCCGTTTTGGGAAAATCC)
RIGHT PRIMER	115072 2	0 60.00	55.00	5.00	1.00 CCAGTGTTCTCCCAGTGGTT	
SEQUENCE SIZE: 2	225683					
INCLUDED REGION	SIZE: 22568	3				
PRODUCT SIZE: 21	17, PAIR ANY	COMPL: 6.0	00, PAIR	3' CO	OMPL: 2.00	

<u>Remarque</u> : pour personnaliser le design des amorces, il est possible d'utiliser les fonctions avancées de Primer 3. Sur la page du logiciel, il est possible de paramétrer certains paramètres supplémentaires (GC%, Tm, longueur souhaitée pour les amorces...) afin de pouvoir améliorer la spécificité des amorces :

General Primer Picking Conditions

Primer Size	Min:	18	Opt:	20	Max:	27	
Primer Tm	Min:	57.0	Opt:	60.0	Max:	63.0	Max Tm Dift
Product Tm	Min:		Opt:		Max:		
Primer GC%	Min:	20.0	Opt:		Max:	80.0	
Max Self Complementarity:						Aax 3' S Compler	<u>self</u> nentarity:

A ce stade, les amorces étant définies, il « suffit » de les commander afin de réaliser l'amplification du plasmide.

Etape 4 : Recherche des sites de restriction

Le plasmide portant le gène codant notre protéine vient d'être amplifié. On réalise maintenant la digestion du plasmide à l'aide d'enzyme de restriction afin d'isoler une séquence contenant le gène d'intérêt.

Ecran du logiciel Nebcutter :

EioLabs	NEBc	utter V2.0	Program Guide Help Com
This tool will take a D and the sites for all Tyy default, only enzymes Further options will ap sequence length is 30 What's new in V2.0	NA sequence and find the large, pe II and commercially available available from NEB are used, bu pear with the output. The maxin 0 KBases. Citing NEBcutter	non-overlapping open reading frame Type III restriction enzymes that cu t other sets may be chosen. Just ente num size of the input file is 1 MBy	es using the E.coli genetic code t the sequence just once. By er your sequence and "submit". te, and the maximum
	I and an entry film and		Standard caguanges
	Local sequence file: /volumes/Ma	contosh HD2/1 Parcounir	t Plasmid vectors
	GenBank number:	[Browse GenBank]	# Plasmid vectors .
		NEB enzymes All commercially available specif	Submit Submit
The sequence is:	Linear Enzymes to use: Circular Enzymes to use: RF-length-to-display: 550 a.a.	All specificities All + defined oligonucleotide sequ Only defined oligonucleotide sequ [define oligos]	Set colors uences
	Name of sequence:	(optional)	

Remarques :

-Au lieu de copier – coller la séquence du plasmide, on utilise le fichier « sequence.txt » créé précédemment en le chargeant dans « Local sequence file ».

-Le réglage « sequence » est sur « circular » car le plasmide est circulaire.

-Le réglage « Minimum ORF length to display » est réglé sur 550 AA par exemple, car on sait que la protéine que l'on étudie et pour laquelle on recherche le gène, mesure 554 acides aminés. -On utilise les enzymes de toutes spécificités.

Pendant le traitement des données...

NEBcutter

Cutting your DNA...

Résultats obtenus :

Les différents ORF repérés sont listés dans un tableau et sont légendés sous forme de flèches grises à l'intérieur de la carte du plasmide.

Le repérage de l'ORF correspond à notre protéine n'est pas très aisé sur cette carte circulaire, on affichera donc une représentation linéaire (menu Display > Linear) :

Le plasmide apparaît sous forme linéarisée avec chaque ORF désigné par le nombre d'AA du produit d'expression, et entouré par un couple d'enzyme de restriction permettant de couper l'ORF.

Le repérage n'étant toujours pas très aisé, on peut utiliser la fonction « Zoom, More... » permettant d'afficher seulement une zone du plasmide. Puisque nous avons précédemment repéré dans la fiche Genbank que l'ORF était localisé entre les pb 154687 et 156384, on réglera par exemple le zoom entre les paires de bases 153000 et 158000 :

00	NEBcutter - More zoom options
tools.neb.com/NEE	cutter2/zoom_more.php?name=73bcb566-sequence&disp=r 🟠
BioLabs: NEBcutter	More zoom options Help Comments
Zoom to this	region: 153000 - 158000 bp OK
[View	the sequence of the displayed region]
	[Re-cut the displayed region]
	Close

Une fois le zoom effectué, on obtient une séquence plus facile à lire dans laquelle on repère l'ORF :

On constate que l'ORF peut être coupé à l'aide des enzymes de restriction BssSI et HgaI. Pour avoir d'autres options, on peut survoler l'ORF avec le pointeur et cliquer dessus :

1200	
1 Impedantedantedantedantedantedantedantedant	ավուտումատիսանումասիստիստիստիստիստի
	-XmnI (97)
	-AlwNI(180)
	-*BceAI (525)
	-BciVI(159)
	-*EaeI(286)
	-BsmFI (217)
	*HgaI (298)
-	BssSI(21)
-	BstEII(65)
-	*BsrFI(360)
-	DraI(81)
-	*NlaIV(490)
-	*#AvaII(193)
-	HindIII(51)
-	*BstBI(47)
-	BtgI (163)
-	BsaJI(627)
-	*EaeI(286)
-	*AatII(43)
	*ZraI(43)

On constate que 21 enzymes de restriction peuvent être utilisées : en pratique Nebcutter avait sélectionné en première intention les 2 enzymes les plus adaptées (BssSI et HgaI) car réalisant la coupure le plus prêt possible de la séquence nucléotidique d'intérêt.

^L≭BsaHI(130)

<u>Remarque</u> : à côté de chaque enzyme de restriction on trouve le nombre total de point de coupure que chaque enzyme est susceptible de réaliser sur la séquence proposée. En pratique, plus ce nombre est élevé, plus le nombre de fragments obtenus après digestion sera élevé.

On retourne sur la page précédente à l'aide du lien « Back to main display » en haut de page à gauche. En cliquant sur le nom de deux enzymes de restriction, on obtient la position des points de restriction sur le plasmide :

On constate que BssSI coupe au nucléotide 154674 et HgaI au nucléotide 156424. \rightarrow le fragment digéré contenant notre gène d'intérêt a donc une longueur de 156424 – 154674 soit **1750 bp**.

Etape 5 : Prévision des conditions électrophorétiques

Dans le menu inférieur « Main options », on réalise une digestion personnalisée du plasmide avec « Custom digest » :

Dans la liste de choix d'enzymes de restriction proposée, cocher les deux enzymes BssSI et HgaI :

BssHII	G [™] CGCG _x C	25	100	100	100	100
BssKI	*CCNGG_	1292	50	100	100	100
BssSI	C [*] ACGA_G	21	50	100	100	50
BstAPI	GCAN_NNN [*] NTGC	82	50	100	25	100
BstBI	TT [*] CG_AA	47	75	100	10	100
	_					

110011		211	20	100	10	100
HaeIII	GG [*] CC	764	50	100	25	100
HgaI	GACGC(N) ₅ (N) ₅	298	100	100	25	100
HhaI	G_CG [™] C	778	25	100	100	100
HinP1I	G [*] CG ₂ C	778	100	100	100	100

puis en bas d'écran, cliquer sur « Digest » :	100		
		Digest	

Après digestion, cliquer sur « View gel » dans le menu inférieur « Main options » :

Main options
New custom digest
View gel
Print

Le logiciel propose alors une fenêtre de simulation de profil électrophorétique comportant toutes les bandes prévisibles après digestion :

00				NEBcut	ter – Custo	m Digest			M
tools.neb.com/	NEBcutte	r2/listdig.ph	o?name=1	73bcb566-sequ	ience&showg	el=1			17
BioLabs	c.			Cust	tom Di	igest	_	Print Close	
NEBcutter			seq	uence - dig	ested with	n: BssSI, HgaI	<u> H</u>	elp Comments	<u>5</u>
		Gel Type	:		Marker	:	DNA Type:		
	0.7%	agarose	\$	none		\$	Unmethylated		
1	L= 102	mm	ОК		#	Ends	Coordinates	Length (bp)	
		unneth.	CpG		1	HgaI-HgaI	6094-12454	6361	
	1				2	BssSI-HgaI	36649-40950	4302	
					3	HgaI-HgaI	186727-190663	3937	
	1				4	HgaI-HgaI	112502-116025	3524	
	-				5	HgaI-HgaI	135665-138842	3178	
					6	HgaI-HgaI	127923-131055	3133	
10	0000 -				7	HgaI-HgaI	1115-4138	3024	
	5000				8	HgaI-HgaI	45960-48759	2800	
	-				9	HgaI-BssSI	50616-53304	2689	
	- 1				10	HgaI-HgaI	125326-127922	2597	
					11	HgaI-HgaI	196972-199554	2583	
					12	BssSI-HgaI	141897-144472	2576	
					13	HgaI-HgaI	25279-27837	2559	
					14	HgaI-BssSI	152120-154674	2555	
1	1000 -				15	HgaI-HgaI	206483-208880	2398	
	1				16	HgaI-HgaI	84719-87057	2339	
	-				17	HgaI-BssSI	131344-133521	2178	
	500 -				18	HgaI-HgaI	149991-152119	2129	
					19	Hgal-Hgal	121832-123827	1996	
	-				20	Hgal-Hgal	21351-23321	1971	
	100 -				21	Hgal-Hgal	55063-57000	1938	
	1				22	Hgal-Hgal	79480-81333	1854	
The evidence 1 and 1					23	Hgal-Hgal	93902-95725	1824	
ne virtual gel	l was ge lata Se	enerated b	y inter	bolating	24	Hgal-Hgal	147422-149207	1786	
Aportinonal u		• <u>aouiis</u> .			25	BssSI-Hgal	154675-156424	1750	
					26	Hgal-Hgal	171050-172784	1735	_
					27	Hoal-Hoal	222877-224592	1716	
					28	Hgal-Hgal	195385-196971	1587	
					29	Hgal-Hgal	217385-218922	1538	

La bande correspondant à notre gène d'intérêt est repérée par rapport à sa longueur connue de 1750 pb : elle porte le numéro 25. Il est possible en survolant le visuel de la piste d'électrophorèse de repérer la bande correspondante.

On constate dans ce cas que suite à l'action des 2 enzymes de restriction retenues, un nombre très important de fragments est obtenu : notre fragment d'intérêt serait impossible à différencier d'autres fragments proches.

On devra donc réenvisager le protocole en choisissant d'autres enzymes de restriction adaptées mais produisant moins de fragments et simuler les meilleures conditions électrophorétiques afin de séparer le fragment d'intérêt.

<u>Exemple à re-simuler</u>: en conservant BssSI, mais en remplaçant HgaI par XmnI, le fragment d'intérêt obtenu aurait une longueur de 1897 pb. Le nombre de points de coupure de XmnI étant inférieur à celui de HgaI, moins de fragments seront produits. En simulant de bonnes conditions électrophorétiques (gel type Clearose, 38 Volts/cm, gel de 87 mm, 100 min par exemple), la bande devient plus facile à isoler :

